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The formation of stationary crossflow vortices in a three-dimensional boundary layer
due to surface roughness located near the leading edge of a swept wing is investigated
using numerical solutions of the compressible Navier–Stokes equations. The numerical
solutions are used to evaluate the accuracy of theoretical receptivity predictions which
are based on the parallel-flow approximation. By reformulating the receptivity theory
to include the effect of surface curvature, it is shown that convex surface curvature
enhances receptivity. Comparisons of the parallel-flow predictions with Navier–Stokes
solutions demonstrate that non-parallel effects strongly reduce the initial amplitude of
stationary crossflow vortices. The curvature and non-parallel effects tend to counteract
one another; but, for the cases considered here, the non-parallel effect dominates
leading to significant over-prediction of receptivity by parallel-flow receptivity theory.
We conclude from these results that receptivity theories must account for non-parallel
effects in order to accurately predict the amplitude of stationary crossflow instability
waves near the leading edge of a swept wing.

1. Introduction
Laminar-flow wings show promise for reducing viscous drag forces in cruise for

commercial aircraft. However, the success of a laminar-flow wing depends critically
on the external disturbance environment and how these disturbances influence the
transition from laminar to turbulent flow. The process by which external disturbances
are converted into instability waves, which are the precursors to turbulence, is called
receptivity (Morkovin 1969).

In wing design, current transition prediction techniques rely on the eN method
(Malik 1990) in which an amplitude ratio, predicted by local linear-stability theory,
is correlated with the transition location. The success of this technique is hampered
by the assumptions of linearity and (usually) parallel flow, and by the exclusion of
the receptivity process which determines the initial amplitude of disturbances within
the boundary layer. Although the eN method is successful in predicting the transition
for two-dimensional disturbances (i.e. Tollmien–Schlichting waves) it has been found
to be highly unreliable when streamwise disturbances are present. The fundamental
assumptions of the eN method are particularly questionable immediately downstream
of the attachment line on a swept wing where the mean boundary layer is very thin and
rapidly growing. Here, the flow is highly sensitive to surface roughness (Braslow et al.
1990; Reibert et al. 1996) which can take a variety of forms in practice: manufacturing
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defects, insect debris, ice crystals, etc. Recent experiments by Reibert et al. (1996)
and Deyhle & Bippes (1996) demonstrate that surface roughness is the primary cause
of stationary crossflow vortices and that stationary vortices dominate the transition
process near the leading edge of swept wings in low-disturbance environments –
such as the cruise condition for an aircraft in flight. However, it must be noted that
travelling crossflow instability waves are also unstable under flight conditions and may
be important to the transition process depending on the disturbance environment.

Recently, the linear and early nonlinear evolution of crossflow vortices has been
well-predicted by analysis based on the Parabolized Stability Equations (PSE) (Haynes
& Reed 1996; Malik, Li & Chang 1994) and these equations form the starting point
for an amplitude-based transition prediction criterion, proposed by Herbert (1991), to
replace eN methods. Transition prediction based on PSE naturally incorporates non-
parallel and nonlinear effects and fully accounts for both two- and three-dimensional
instability mechanisms. A complete amplitude-based transition criterion requires the
ability to predict the receptivity of the boundary layer to external disturbances.
However, the receptivity process for crossflow modes remains an open issue mainly
because experimental studies of receptivity due to surface roughness are hampered
by several factors: (i) the complete disturbance environment is generally unknown,
(ii) the amplitudes of crossflow instability waves near the source of receptivity are
not measurable, and (iii) at downstream stations where measurements are possible,
nonlinear effects may have already occurred. Through the numerical simulations
presented here, each of these limitations is overcome and results are obtained that are
used to evaluate theoretical receptivity predictions. The evaluation and enhancement
of theoretical approaches is of critical importance, since theoretical predictions will
probably be the means of incorporating receptivity into an improved transition
prediction methodology for laminar-flow-wing design.

There has been considerable theoretical research on the prediction of receptivity
in three-dimensional boundary layers. A useful review article is given by Choudhari
& Streett (1990) in which the different receptivity mechanisms for the generation
of stationary and travelling crossflow modes are discussed. In particular, it is sug-
gested that although the travelling crossflow instability modes have larger linear
growth rates than stationary modes, local receptivity mechanisms preferentially excite
stationary modes. This hypothesis has been recently verified by Crouch (1993) and
Choudhari (1994) who have independently studied the receptivity of crossflow modes
for incompressible flow where the mean boundary layer is given by the family of
Falkner–Skan–Cooke (Cooke 1950) swept-wedge flows. The analysis used by both
Crouch (1993) and Choudhari (1994) is done in the same framework as the classi-
cal asymptotic receptivity theories of Goldstein (1985) and Ruban (1984). However,
instead of approximating the Navier–Stokes equations using high Reynolds number
expansions, the equations are replaced by the locally parallel equations in the vicinity
of the surface disturbance. This approach was first used by Zavol’skii, Reutov &
Ryboushkina (1983) to study the generation of Tollmien–Schlichting waves in the
boundary layer over a wavy surface and several recent review articles (Choudhari
& Streett 1994; Crouch 1994) summarize the various applications of this technique.
The advantage of what has been called Finite Reynolds Number Theory (FRNT)
is that solutions can be more easily obtained for a wide range of physical problems
at moderate Reynolds numbers. Furthermore, FRNT is not limited to the vicinity
of the first neutral point as is the asymptotic theory. Using FRNT, Crouch (1993)
and Choudhari (1994) demonstrate that the initial amplitudes of travelling crossflow
modes due to the interaction of free-stream acoustic waves with surface roughness
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is much smaller than that of stationary modes which are generated by the direct
scattering of the mean flow by the roughness. This conclusion is directly related to
the fact that the amplitude of unsteady free-stream disturbances (both sound and
turbulence) is very low under flight conditions and this conclusion is consistent with
the experimental observations of Radeztsky, Reibert & Saric (1993) and Deyhle &
Bippes (1996). Also consistent with the experimental results, the theory predicts the
greatest crossflow instability wave amplitude to occur for roughness just upstream of
the first neutral point. Although receptivity actually increases upstream of the neutral
point, the amplitude of a generated instability wave in the unstable region is reduced
because disturbances are highly damped upstream of the neutral point. However, as
pointed out by Choudhari (1994), the results of the theoretical predictions require
numerical and/or experimental verification in the vicinity of the first neutral point be-
cause non-parallel effects may be important. Additionally, in practical situations, such
as the leading edge of a swept wing, the first neutral point for stationary crossflow
vortices will occur in a region of large surface curvature.

The effects of both non-parallel flow and surface curvature on the stability char-
acteristics of stationary crossflow vortices have been recently examined by Malik
and coworkers (Masad & Malik 1994; Malik & Balakumar 1993; Malik & Li 1993)
using both PSE and perturbation theory to account for the non-parallel effects in
the boundary layer on a swept circular cylinder. These results have generally shown
that convex curvature is stabilizing while non-parallel effects are destabilizing for
crossflow modes. However, the impact of non-parallelism and curvature remain open
issues with regard to receptivity.

Given the importance of stationary crossflow vortices in the transition process
on swept wings, the mechanisms responsible for their formation and the accurate
prediction of their initial amplitude are essential for the development of practical
laminar-flow wings. The results presented here close the gap in transition prediction
by determining the receptivity of crossflow vortices through numerical simulation
of the Navier–Stokes equations. In this way, the disturbance environment can be
carefully controlled and both the physical mechanisms of the receptivity process and
the success and limitations of the theoretical approaches (Choudhari 1994; Crouch
1993) can be established. In particular, the effects of both body curvature and non-
parallel mean flow are examined in the context of a simplified model of a wing
leading edge and the results are used to evaluate receptivity predictions based on
finite Reynolds number theory.

The discussion begins in § 2 with the problem formulation and solution techniques
followed by a comparison of results from receptivity calculations and theoretical
receptivity predictions in § 3. Finally the major findings and conclusions of this study
are summarized in § 4.

2. Formulation
In this section, the receptivity problem and governing equations are described,

followed by a summary of the numerical methods used to obtain Navier–Stokes-
based receptivity solutions. The section ends with a brief synopsis of the linear
stability and receptivity theories used for comparison to the Navier–Stokes results.

2.1. Problem description and governing equations

The parabolic cylinder, shown in figure 1, is used to model the leading edge of
a swept wing. The parabolic cylinder is an ideal geometry for the investigation of
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Figure 1. Swept parabolic-cylinder geometry.

crossflow instability and receptivity due to the extended region of favourable pressure
gradient which drives the crossflow instability. In addition, the boundary layer over the
parabolic cylinder naturally approaches a Blasius-like profile far downstream, since the
surface curvature and pressure gradient naturally decay downstream. Likewise, non-
parallel effects due to the rapidly growing boundary layer near the leading edge are
also attenuated downstream. Thus, progressing downstream of the leading edge, the
stability and receptivity characteristics will be increasingly well-predicted by parallel,
flat-plate theory, providing a reference for the comparison of numerical and theoretical
results. From a practical perspective, the parabolic cylinder is a convenient geometry
since it is described by a simple analytical function and a conformal transformation
exists which maps the parabolic cylinder to a flat plate (Van Dyke 1963).

To create a three-dimensional boundary layer, the parabolic cylinder is swept at
an angle θ with respect to a uniform incoming flow with velocity magnitude U∞.
Two coordinate systems are shown in figure 1. Velocity components in the global
coordinates are denoted by u in the chordwise (x) direction, v in the vertical (y)
direction, and w in the spanwise (z) direction. In the body-fixed coordinate system,
the arc-length along the surface of the wing is given by s, the distance normal to
the wing surface is n, and z is again the spanwise direction. Velocity components in
this coordinate system are denoted by vs, vn, and w for the s-, n-, and z-directions,
respectively. The parabolic cylinder is at zero angle of attack relative to the free-
stream velocity and is idealized as having infinite span with no taper. This avoids end
effects and renders all z-derivatives zero in the mean.

The natural length scale for the parabolic cylinder is the leading-edge radius, r∗n ,
where the superscript ∗ denotes dimensional quantities. In the following, all lengths
are non-dimensionalized using r∗n and velocities are non-dimensionalized using the
chordwise component of the free-stream velocity, u∗∞ = U∗∞ cos(θ). The reference
time scale is the free-stream convective scale, r∗n/u∗∞, and temperature and density
are non-dimensionalized using their free-stream values, T ∗∞ and ρ∗∞, respectively.
The reference pressure is then given by twice the free-stream dynamic pressure,
ρ∗∞(u∗∞)2.

The flow over a swept parabolic cylinder is modelled using an ideal gas where
both the specific heat at constant pressure, c∗p, and the specific heat at constant
volume, c∗v , are constant. The dynamic viscosity, µ∗, is also held constant and Stokes’
hypothesis is used to compute the second coefficient of viscosity. A unit Prandtl
number, Pr = µ∗c∗p/κ∗ = 1, is assumed where κ∗ is the thermal conductivity and the
ratio of specific heats, γ = cp

∗/cv∗, is 1.4. The use of constant specific heats, viscosities,
and Prandtl number is not expected to have a qualitative effect on receptivity or
stability, in the flow regime studied here, but does greatly simplify the current
analysis.
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Under these conditions, the flow is governed by the following non-dimensional
form of the compressible Navier–Stokes equations, written using coordinate-system-
independent vector notation

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1a)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+

2

Re

[∇ · S − 1
3
∇(∇ · u)] , (2.1b)

ρ
∂T

∂t
+ρu · ∇T + (γ− 1)ρT∇ · u =

γ

Re
∇2T +

2γ(γ− 1)M 2

Re

[
S · S− 1

3
(∇ · u)2

]
, (2.1c)

where S is the strain-rate tensor, u is the velocity vector, ∇ is the gradient operator,
and the pressure is given by the equation of state

p = ρT/(γM 2). (2.1d)

In these equations, the Mach number is defined as M = u∗∞/c∗∞, where c∗∞ is the
free-stream speed of sound, and the Reynolds number is Re = ρ∗∞u∗∞r∗n/µ∗.

The parameters for the numerical simulations are selected to generate a flow which
roughly models the flow near the leading edge of a subsonic transport aircraft in cruise.
For this purpose, we use a sweep angle of θ = 35◦ with M = 0.8 and Re = 1× 105. It
should be emphasized that these conditions only approximate the flow of air around
an aircraft wing, since unit Prandtl number and constant fluid properties are assumed.
In the free-stream, the Mach number is defined as M∞ = U∞/c∞ = M (1 + tan2(θ))1/2

and for the conditions used here, M∞ = 0.98. Assuming that the nose radius of a
typical airfoil section is approximately 1% chord (Abbott & von Doenhoff 1959),
these conditions correspond to a chord Reynolds number of 1 × 107 which is in the
realm of flight Reynolds numbers.

Here, we consider the linear receptivity of the three-dimensional boundary layer on
the swept parabolic cylinder. The flow variables are written as

ρ = ρ̄(x) + εw ρ
′(x, t), u = ū(x) + εw u

′(x, t), (2.2a,b)

T = T̄ (x) + εw T
′(x, t), p = p̄(x) + εw p

′(x, t), (2.2c,d )

where a bar denotes base-flow variables; primes denote linear perturbations about
that base flow; and εw represents the non-dimensional surface roughness height,
εw = ε∗w/r∗n � 1. Although the current work addresses stationary disturbances, we
allow for unsteady perturbations since a time-marching scheme is used to find the
steady disturbance solution.

Substituting (2.2) into (2.1) and dropping terms that are nonlinear in εw leads
to two sets of equations: one for the base flow and one for the perturbation flow.
The base flow equations are just the steady version of (2.1). The perturbation equa-
tions, referred to here as the Linearized Navier–Stokes (LNS) equations, are given
by

∂ρ′

∂t
+ ∇ρ̄ · u′ + ∇ρ′ · ū+ ρ̄∇ · u′ + ρ′∇ · ū = 0 , (2.3a)

ρ̄
∂u′

∂t
+ ρ′(ū · ∇)ū+ ρ̄(u′ · ∇)ū+ ρ̄(ū · ∇)u′ = −∇p′ + 2

Re

[
∇ · S ′ − 1

3
∇(∇ · u′)

]
, (2.3b)
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ρ̄
∂T ′

∂t
+ ρ′(ū · ∇)T̄ + ρ̄(u′ · ∇)T̄ + ρ̄(ū · ∇)T ′

+(γ − 1)
[
ρ̄T̄∇ · u′ + ρ̄T ′∇ · ū+ ρ′T̄∇ · ū

]
=

γ

Re
∇2T ′ +

4γ(γ − 1)M 2

Re

[
S̄ · S ′ − 1

3
(∇ · ū)∇ · u′

]
, (2.3c)

where the linearized equation of state is

p′ = (ρ̄T ′ + T̄ ρ′)/(γM 2). (2.3d)

The LNS equations can be written in the compact form

∂U ′

∂t
+ L(U ′; Ū ) = 0, (2.4)

where the vector of primitive variables is U = {ρ, uT, T }T and L(U ′; Ū ) is a lin-
ear operator which depends on the base flow and acts on the disturbance vari-
ables.

The general procedure for solving the surface roughness receptivity problem is as
follows. First, the steady Navier–Stokes equations, subject to appropriate boundary
conditions (see § 2.2), are solved to obtain the base-flow about the swept parabolic
cylinder. Then, (2.4) is solved subject to boundary conditions (see § 2.3) which include
surface roughness. The solution to (2.4) represents the response of the boundary layer
to the surface roughness disturbance and, from this solution, the initial amplitude of
the dominant crossflow instability wave is extracted (see § 3.3) to determine receptivity.

2.2. Numerical approach for base-flow solutions

This section summarizes the numerical method used to obtain the base-flow solution
about the swept parabolic cylinder. For additional information about mesh generation,
discretization, and boundary treatments, the reader is referred to Collis (1997). Figure
2 shows the computational domain and mesh used to obtain the base flow about
the parabolic cylinder. This mesh is constructed using the conformal mapping of
the parabolic cylinder to a flat plate with additional mapping functions used to
cluster points near the leading edge and in the boundary layer. Taking advantage of
symmetry about the x-axis, the computational domain is limited to the upper half of
the flow field. An isothermal, no-slip boundary condition is enforced on the surface
of the parabolic cylinder. Thus, the wall velocities are given by

ū(s, 0) = 0 (2.5)

and the wall temperature is set to the free-stream stagnation temperature, T0,

T̄ (s, 0) = T0 ≡ 1 +
γ − 1

2
M 2
∞ (2.6)

which is also the adiabatic wall temperature since we use Pr = 1.0. On the inflow
boundary, the incoming Riemann invariants are enforced based on a potential flow
solution and outgoing Riemann invariants are extrapolated from the interior of the
computational domain. On the outflow boundary, a boundary treatment based on the
parabolized Navier–Stokes equations has been developed which allows the viscous
boundary layer to smoothly leave the computational domain with very little upstream
influence (Collis 1997).

With these boundary conditions, (2.1 a–c) are first converted to a generalized coor-
dinate system in order to map the mesh shown in figure 2 to a uniform computational
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Figure 2. Parabolic cylinder mesh for base-flow computation, every third mesh line shown for
clarity. Tic marks denote 100r∗n .

domain. In the uniform computational space, fourth-order-accurate central differ-
ences are used for all interior spatial derivatives. Near the computational boundaries,
one-sided differences are used which ensure overall fourth-order accuracy. Since the
parabolic cylinder is assumed to have infinite span, all z-derivatives are zero so that
the base-flow solution is two-dimensional in the (x, y)-plane, but with three non-zero
components of velocity due to wing sweep. The discretized equations are marched
to the steady state using the fully-implicit, first-order-accurate, backward Euler time-
advancement scheme. Convergence to the steady state is accelerated by using local
time stepping. To solve the nonlinear system of equations at each time step, a New-
ton iteration is employed along with approximate factorization of the Jacobian to
economically solve the large system of linear equations at each iteration. This re-
sults in a series of block (nearly, but spoiled by the boundary nodes) penta-diagonal
systems of equations which are solved at each iteration using a specially developed
LU decomposition routine optimized for vector supercomputers. Typically, only one
Newton iteration is used per time step, since time accuracy is not required.

To validate our numerical approach, base-flow solutions for an unswept parabolic
cylinder, obtained with the current method, were compared to the reference incom-
pressible solutions of Davis (1972). These comparisons are reported in Collis (1997)
and when extrapolated to zero Mach number, the solutions using the current method
are in excellent agreement with Davis (1972).

2.3. Numerical approach for receptivity solutions

With the base-flow solution known, the receptivity to surface roughness of the
three-dimensional boundary layer on the swept parabolic cylinder is investigated
by solving (2.4) in the vicinity of the roughness location. Figure 3 shows a schematic
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Figure 3. Schematic of computational domain for a receptivity calculation showing the surface
roughness geometry.

of the computational domain including boundary conditions used for the linearized
calculations.

Without loss of generality, the surface roughness is modelled by a single Fourier
mode in the spanwise direction. Under the linear assumption, more complicated
spanwise distributions can be constructed as a superposition of the individual spanwise
Fourier modes. Thus, denoting the smooth wall by n(s, z) = 0 the rough wall is
obtained by adding a small, spanwise-periodic perturbation given by

n′(s, z) = εwhw(s)eikzz , (2.7)

where hw(s) is the chordwise shape of the roughness, kz = k∗z r∗n is the spanwise
wavenumber of the roughness, and the real-part convention is used. For the cases
presented here, a Gaussian distribution,

hw(s) = exp

[−(s− sw)2

2σ2
w

]
, (2.8)

is used for the chordwise roughness shape, where the roughness is centred about
sw and σw is the standard deviation (i.e. measure of the width) of the Gaussian
distribution. In computing theoretical receptivity predictions, the Fourier transform
of the bump is required in the chordwise direction. For a Gaussian distribution, the
Fourier transform is also Gaussian and is given by

ĥw(ks) = σw exp

[−k2
s σ

2
w

2

]
, (2.9)

where ks is the wavenumber in the s-direction.
No-slip, isothermal boundary conditions are imposed on the disturbed wall. Under

the linear assumption, the boundary conditions on the rough wall can be transferred by
a Taylor series expansion to inhomogeneous boundary conditions on the undisturbed
surface (Collis 1997). This results in the following wall boundary conditions for the
disturbance variables:

u′(s, 0, z) = −hw(s)eikzz
∂ū

∂n
(s, 0), (2.10)

T ′(s, 0, z) = −hw(s)eikzz
∂T̄

∂n
(s, 0). (2.11)
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For receptivity calculations, the inflow boundary is placed at least 4σw upstream of
the roughness location which allows the use of zero disturbance boundary conditions.
Similarly, the top boundary is located at least eight boundary layer thicknesses above
the parabolic cylinder, at the outflow boundary, which again allows zero disturbance
boundary conditions to be used. The accuracy and viability of these boundary
conditions and locations were determined by performing a calculation for a larger
domain which showed no significant change in the boundary layer response.

Near the outflow boundary, a sponge term (Israeli & Orszag 1981) is added to the
right-hand side of (2.4),

F s = fs(s)U
′(s, n, z), (2.12)

where fs(s) is the sponge function which is designed to vary smoothly from zero in
the interior to a finite value, As, on the boundary. For this purpose, we use the cubic
function

fs(s) =

 As

(
s− ss
se − ss

)3

, s ∈ (ss, se]

0, otherwise.

(2.13)

In this expression, ss denotes the start of the sponge and se the end. For all calculations
presented here, se corresponds to the end of the computational domain, ss = 0.8se, and
As = 80. Extensive testing and validation of the outflow sponge has been performed
for crossflow instability waves (Collis 1997). From this investigation, an outflow
sponge region with streamwise length of at least one wavelength of the crossflow
instability wave was found sufficient to reduce reflections to less than 0.3%, when
measured using the error in the spatial growth rate. For all cases presented here,
the sponge region described above is at least one instability wavelength long and no
reflections where observed.

Given the base-flow solution and disturbance boundary conditions, the disturbance
solution is written as

U ′(x, y, z, t) = Û (x, y, t) eikzz , (2.14)

where the real-part convention is used. This expression is substituted into (2.4) and the
resulting system of equations is converted to a generalized coordinate system in the
(x, y)-plane which enables the physical mesh to be mapped to a uniform computational
domain. The same fourth-order spatial discretization used for the base-flow solver § 2.2
is used here in the computational domain. Since we are interested in steady surface
disturbances, the discretized equations are marched to the steady-state solution again
using the backward Euler time-advancement scheme. Approximate factorization is
used to reduce the large (complex) system of linear equations into a series of block
(nearly) penta-diagonal systems of equations which are solved using an optimized
LU decomposition routine. Additional details of the numerical method along with
extensive validation can be found in Collis (1997).

2.4. Linear stability theory

The solution of the linearized Navier–Stokes equations, as described in (§ 2.3), gives
the exact linear receptivity and stability characteristics including the effects of surface
curvature and non-parallel flow. For comparison, we also solve the linear stability
equations in the body-fitted orthogonal coordinate system, (s, n, z), with a perturbation
approach to account for non-parallel effects. We start with (2.4) where the velocity
vector takes the form u = {vs, vn, w}T and differential distances in the s-direction are
given by h(s, n)ds where h(s, n) is the coordinate system metric and metrics in the
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other coordinate directions are unity. Each of the differential operators in (2.4) can be
written as a combination of partial derivatives with respect to (s, n, z) and additional
terms involving the metric and its derivatives. The generalized, differential operators
required for the Navier–Stokes equations can be found in basic texts such as Sherman
(1990). The detailed form of the equations for the body-fitted coordinate system is
given in Collis (1997) along with a more thorough discussion of the stability theory
and solution methodology.

Nonparallel stability characteristics are determined using a perturbation approach,
pioneered by Ling & Reynolds (1973) and Saric & Nayfeh (1975). For high Reynolds
numbers, the mean boundary layer flow, Ū , can be considered a slowly varying
function of the streamwise coordinate, s. Defining a slow coordinate, s1 = εs, the base
flow is written as an expansion in the parameter ε

Ū (s, n) = Ū 0(s1, n) + εŪ 1(s1, n) + . . . , (2.15)

where ε is a small dimensionless parameter representing the non-parallelism of the
base flow. Here, Ū 0(s1, n) is the quasi-parallel base flow, and Ū 1(s1, n) is the first-order
non-parallel correction which, for the class of flows considered here, consists only of
the scaled, wall-normal velocity, Ū 1 = {0, 0, v̄n/ε, 0, 0}T.

Utilizing the method of multiple scales, linear disturbances about the base flow can
be expanded in ε as

U ′(s, n, z, t) =
{
A(s1)Û 0(s1, n) + εÛ 1(s1, n) + . . .

}
× exp

(∫
iks(s1)ds+ ikzz − iωt

)
, (2.16)

where ks is the chordwise wavenumber, kz is the spanwise wavenumber, and ω is
the angular frequency. From the following analysis Û 0(s1, n) will be identified as the
quasi-parallel eigenfunction, A(s1) as the local wave amplitude, and Û 1(s1, n) as the
non-parallel correction at O(ε).

Equations (2.15) and (2.16) are substituted into (2.4) and terms are grouped in
powers of ε. At O(ε0) we obtain the parallel, linear stability equations

L0(Û 0; ks, kz, ω) = 0 (2.17)

which are solved subject to homogeneous boundary conditions leading to an eigen-
value problem for (ks,Û 0) given kz .

At O(ε1) we obtain an equation of the form

L0(Û 1; ks, kz, ω) = G
dA

ds1
+HA, (2.18)

where G and H depend on ks and the non-parallel mean-flow terms, Ū 1. Equation
(2.18) is subject to the same homogeneous boundary conditions as (2.17) and for
a solution to exist, a solvability condition must be satisfied. This is accomplished
by introducing the adjoint eigenfunction and requiring that the solution to (2.18)
be orthogonal to the null space of L0. The details of this procedure, including the
determination of the adjoint eigenfunction from the adjoint equation, are given in
Collis (1997) but for our purposes here, it is sufficient to say that enforcing the
solvability condition leads to, at lowest order, a solution of the form

U ′(s, n, z, t) = A(s0)Û 0(s, n) exp

[∫ s

s0

(
iks(s)− k̃s(s)) ds+ ikzz − iωt

]
, (2.19)
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where s0 is an arbitrary reference location and k̃s is the non-parallel mean-flow term
which results from enforcing the solvability condition. From this form of the solution,
the spatial growth rate, σ, and real component of the chordwise wavenumber, α, are
given by

σ = −Im(ks)−Re(k̃s) + Re

(
∂

∂s
ln(Û0)

)
, (2.20a)

α = Re(ks)− Im
(
k̃s
)

+ Im

(
∂

∂s
ln(Û0)

)
. (2.20b)

The three terms which contribute to the non-parallel growth rate in (2.20a) are, in
order of appearance: the quasi-parallel growth rate with curvature, the non-parallel
mean-flow term, and the eigenfunction growth term. Note that Û0 is any quantity
based on the quasi-parallel eigenfunction and can be a function of both s and n. In
general, both σ and α depend on the particular disturbance quantity used and on the
wall-normal coordinate. To avoid ambiguity, all growth-rate results are presented in
terms of the square-root of the integrated disturbance kinetic energy

K̂ ≡
[

1

2

∫ ∞
0

(û · û) dn

]1/2

(2.21)

which removes the n dependence of the growth rate. Thus, in equation (2.20a), Û0 is
replaced by K̂0. Since there is no phase information in K̂ , α in (2.20b) is computed
using Û0 = v̂s0 at the point where |v̂s0| is a maximum in n.

In practice, the quasi-parallel eigenproblem (2.17) is solved using Chebyshev collo-
cation with a matrix eigenvalue solver. To enforce the solvability condition, the adjoint
equation is solved using fourth-order Runge–Kutta integration with orthonormaliza-
tion (Conte 1966). The reader is referred to Collis (1997) for additional details.

2.5. Parallel-flow receptivity theory

Receptivity results from the linearized Navier–Stokes solutions are compared to
theoretical receptivity predictions obtained using Finite Reynolds Number Theory
(FRNT). The development of the theory follows the exposition given by Choudhari
(1994) with appropriate extensions to include compressibility and surface curvature
(Collis 1997).

In FRNT, the linearized Navier–Stokes equations are approximated by the quasi-
parallel disturbance equations. Consistent with this, the solution is expanded as

U (S, n, z) = Ū (sw, n) + εwU
′(S, n, z) + . . . , (2.22)

where the two-dimensional base flow in (2.2) has been replaced with the local quasi-
parallel approximation at sw and we have introduced the shifted streamwise coor-
dinate, S = s − sw . Formally, this approximation is only valid when the Reynolds
number based on sw is large (see Choudhari 1994). The disturbance U ′ is obtained
by solving the Navier–Stokes equations linearized about the parallel base flow

L(U ′; Ū (sw, n)) = 0 (2.23)

subject to the wall boundary conditions (2.10) and homogeneous boundary conditions
as n→∞. Since the mean flow is parallel, the solution can be expanded in a Fourier
series, which, when substituted into (2.23), leads to the parallel stability equations (2.17)
for ω = 0. The solution to these equations is obtained using Chebyshev collocation
with Gaussian elimination to solve the resulting linear system of equations.
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As discussed in detail by Choudhari (1994), the solution of the linear stability
equations in Fourier space can be obtained without regard for causality. However,
when the Fourier inversion,

U ′(S, n, z) =
1

(2π)1/2

∫
Γ

Û (ks, n)e
iksS+ikzzdks, (2.24)

is performed to return the solution to physical space, causality must be accounted for
in choosing the inversion contour, Γ . Herein, we assume that the crossflow instability
is convective in nature without applying a rigorous causality condition (Bers 1983,
Chap. 3.2). This assumption has been used by several researchers in the context of
FRNT (Choudhari 1994; Crouch 1994). With this assumption, the contribution of
the integral in (2.24) to a particular crossflow instability mode is given by the residue
of the integrand at the complex streamwise wavenumber, αcf , of the crossflow mode

U ′(S, n) =
i(2π)1/2eiαcfS

(∂Û−1/∂ks)(αcf, n)
, (2.25)

where Û is an any component of Û . The value of ∂Û−1/∂ks is determined by

computing Û−1 at ks = αcf ±∆ks and using a second-order-accurate central difference
to approximate the derivative.

The form of the complete perturbation vector corresponding to the individual
component residues (2.25) for (sw, kz) is then given by (Goldstein 1985)

U ′cf(s, n, z) = ĥw(αcf) Λ(kz, sw) Û 0(n, kz) eiαcf (s−sw)+ikzz , (2.26)

where ĥw(αcf) is the amplitude of the Fourier component of the roughness shape-
function (2.9) which is resonant with the crossflow instability wave with streamwise
wavenumber αcf , as predicted by linear stability theory applied at sw with spanwise
wavenumber kz . The factor Λ(kz, sw) is called the ‘efficiency’ function which character-
izes the local receptivity process independent of the geometry of the roughness and
Û 0(n, kz) is the quasi-parallel eigenfunction for the stationary crossflow mode under
consideration.

The efficiency function is determined by equating any component of (2.26) with the
appropriate residue given by (2.25). Since the residue depends on both the roughness
location and the particular crossflow mode, so too does the efficiency function.
However, the particular value of Λ depends on the normalization of Û 0. Similar to
the stability theory presented in § 2.4, we base all receptivity results on the square-root
of the integrated disturbance kinetic energy (2.21) so that the results are independent
of the wall-normal coordinate. Thus,

ΛK̂ = |Λ|K̂0, (2.27)

where K̂ is defined in (2.21). The predicted amplitude of the crossflow instability wave
at sw measured using K̂ is then given by

Aw = |ĥw(αcf)| ΛK̂. (2.28)

Our implementation of FRNT has been validated against the results of Choudhari
(1994) for a Falkner–Skan–Cooke velocity profile and additional details regarding the
method and validation are available in Collis (1997).
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Figure 4. Schematic of a three-dimensional boundary layer near a swept leading edge. Surface
curvature is not explicitly shown in order to simplify the presentation.

3. Results
Results are presented first for the base flow about the parabolic cylinder. Then, the

linear stability characteristics of the base flow are determined followed by detailed
receptivity results for surface roughness placed near the leading edge.

3.1. Base-flow characteristics

We begin by documenting the three-dimensional boundary layer over the swept
parabolic-cylinder for the conditions: M = 0.8, Re = 1× 105, and θ = 35◦. Figure 4
shows a schematic of a three-dimensional boundary layer near a swept leading edge
which aids in the definition of the various boundary-layer parameters. In this study,
the boundary-layer edge is defined as the point where the spanwise, w, component of
velocity reaches 99.9% of its free-stream value, and quantities at the edge are denoted
by a subscript e. Since the wing has infinite span, the w-velocity profile increases
monotonically from zero at the wall to its free-stream value, tan(θ). This is in contrast
to the more traditionally used vs velocity. Recall that vs is the velocity locally tangent
to the body at a given station while vn is the body-normal velocity. These velocity
components are related to the global Cartesian velocity components by

vs = nyu− nxv, (3.1)

vn = nxu+ nyv, (3.2)

where the outward unit-normal to the body is n = {nx, ny, 0}T. Since the flow is
accelerated in the chordwise direction, the vs velocity outside the boundary layer
is greater than the free-stream velocity making an unambiguous definition of the
boundary-layer edge difficult. Although the particular choice of edge conditions
does have an influence on the reported boundary-layer parameters, the effects are
minor and the current approach yields adequate results. Throughout the following
discussion, the reader may wish to consult table 1 which itemizes the boundary-layer
edge conditions and parameters for selected stations near the leading edge.

The magnitude of the edge velocity, projected to the plane tangent to the body, is
given by Ue = (vs

2
e + w2

e )
1/2. In practice, Ue is referred to as the total edge velocity

since vn is negligible except in the immediate vicinity of the attachment line. The
edge velocity makes an angle θe with respect to the x-axis and this angle is called
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δ1 δ2 θe wsmax
s ×100 ×100 Ue Te (deg.) Ue χ M e βh

0.000 0.324 0.119 0.700 1.128 90.0 0.000 0 0.527 1.000
0.020 0.324 0.119 0.700 1.128 88.7 −0.006 7 0.527 1.000
0.041 0.324 0.119 0.700 1.128 87.3 −0.012 14 0.527 0.999
0.085 0.324 0.120 0.703 1.128 84.5 −0.024 28 0.529 0.996
0.109 0.325 0.120 0.705 1.127 82.9 −0.031 36 0.531 0.993
0.136 0.325 0.120 0.708 1.127 81.2 −0.038 45 0.533 0.989
0.197 0.326 0.121 0.717 1.125 77.5 −0.053 63 0.540 0.978
0.233 0.328 0.122 0.723 1.124 75.4 −0.061 73 0.545 0.970
0.273 0.329 0.123 0.731 1.122 73.2 −0.069 84 0.552 0.960
0.368 0.334 0.125 0.752 1.118 68.5 −0.084 105 0.569 0.931
0.423 0.338 0.127 0.766 1.116 66.0 −0.090 116 0.580 0.912
0.485 0.344 0.129 0.781 1.113 63.6 −0.096 126 0.592 0.890
0.553 0.351 0.132 0.799 1.109 61.1 −0.101 136 0.607 0.864
0.712 0.371 0.140 0.838 1.101 56.5 −0.106 153 0.639 0.801
0.802 0.384 0.144 0.860 1.096 54.5 −0.107 161 0.657 0.765
0.904 0.400 0.150 0.881 1.091 52.5 −0.106 168 0.675 0.727
1.014 0.419 0.156 0.903 1.086 50.8 −0.105 174 0.693 0.688
2.091 0.618 0.221 1.030 1.055 42.8 −0.087 208 0.803 0.425
4.098 0.953 0.326 1.111 1.033 39.0 −0.066 232 0.874 0.241
6.167 1.239 0.415 1.143 1.024 37.7 −0.055 242 0.904 0.168
8.210 1.483 0.491 1.159 1.019 37.1 −0.048 248 0.919 0.131

10.013 1.676 0.550 1.169 1.016 36.8 −0.043 251 0.928 0.110
15.479 2.175 0.705 1.185 1.011 36.2 −0.034 255 0.943 0.075
20.261 2.544 0.818 1.192 1.009 35.9 −0.030 256 0.949 0.060
25.164 2.879 0.922 1.197 1.007 35.8 −0.027 255 0.954 0.049
30.121 3.185 1.016 1.200 1.006 35.7 −0.024 254 0.957 0.042
40.092 3.733 1.186 1.204 1.005 35.5 −0.021 251 0.961 0.033
50.083 4.216 1.335 1.207 1.004 35.4 −0.018 249 0.964 0.027

Table 1. Swept parabolic-cylinder boundary-layer characteristics for M = 0.8, Re = 1×105, θ = 35◦,
Pr = 1, and T (s, 0, z) = T0. Crossflow Reynolds number, χ, is defined in (3.5) and the Hartree
parameter, βh, is defined by (3.6).

the local sweep angle. When presenting boundary-layer profiles, it is useful to convert
the velocity to a coordinate system that is locally aligned with the edge velocity.
Velocity components in this ‘streamline’ coordinate system are denoted by (us, vn, ws),
where us is the local, streamwise velocity, vn is the body-normal velocity, and ws is the
crossflow velocity. These components are related to the velocities in the boundary-
fitted coordinate system by

us = cos(θe)vs + sin(θe)w, (3.3)

ws = − sin(θe)vs + cos(θe)w. (3.4)

With these definitions, we begin to examine the characteristics of this three-dimen-
sional boundary-layer. Figure 5 shows streamwise, us, and crossflow, ws, velocity
profiles at three stations near the leading edge where the profiles have been non-
dimensionalized by Ue. The streamwise profile is Blasius-like while the crossflow
profile is inflectional giving rise to the inviscid, crossflow instability.

For this flow, the standard attachment-line length scale δ∗l ≡ [ν∗e /(∂U∗e /∂s∗)]1/2 is
0.00304 r∗n and this yields an attachment-line Reynolds number R̄ ≡ δ∗l w∗∞/ν∗∞ of 213.
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Figure 5. Velocity profiles in local streamwise coordinates: ——, us/Ue; - - - -, ws/Ue.
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Figure 6. Maximum, in n, of the crossflow component of velocity normalized by the
local edge velocity.

This value of R̄ is less than the critical value of 583, which ensures that the flow is
linearly stable along the attachment line (Spalart 1989).

Figure 6 shows the chordwise evolution of the maximum crossflow component of
velocity normalized by the local edge velocity. The normalized crossflow component
is everywhere negative and reaches its greatest magnitude of −0.107 at s = 0.802. At
the point of maximum normalized crossflow, the crossflow Reynolds number

χ ≡ δ∗0.999w
∗
s max/ν

∗
e (3.5)

is 161. The results of Poll (1985) for a swept circular cylinder indicate that the critical
crossflow Reynolds number is 125 and our value of 161 suggests that significant
crossflow instability will be present. Table 1 shows that the crossflow Reynolds
number reaches a maximum of 256 at s ≈ 20.3.

The variation of the local sweep angle, θe, of the edge velocity is shown in figure 7.
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Figure 8. ——, Boundary layer displacement thickness, δ1, and - - - -, momentum thickness, δ2.

At the point of maximum normalized crossflow velocity, the local sweep angle is 54.5◦
relative to the chord compared to a value of 90◦ at the attachment line. Downstream,
the local sweep angle asymptotes to the global sweep angle θ = 35◦ as the chordwise
pressure gradient decays. The pressure gradient along the parabola is documented
using the Hartree pressure-gradient parameter which is defined as

βh =
2m

m+ 1
, where m =

s

us

∂us

∂s
. (3.6)

Table 1 lists values of βh along the length of the plate. At the attachment line,
βh = 1, corresponding to an impingement flow in the (x, y)-plane, while downstream
of the leading edge, βh decays monotonically to zero. At the point of maximum
normalized crossflow, βh = 0.765 and by 30 nose radii downstream βh is reduced to
0.042 indicating that the flow is approaching a zero-pressure-gradient boundary layer.

Figure 8 shows the displacement and momentum thickness evolution for the local
streamwise velocity profile. The streamwise displacement thickness is defined by

δ1 ≡
∫ δ0.999

0

(
1− ρus

ρeUe

)
dn (3.7)

while the streamwise momentum thickness is given by

δ2 ≡
∫ δ0.999

0

ρus

ρeUe

(
1− us

Ue

)
dn. (3.8)

As validation of our numerical method, we compare the attachment-line thickness
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Figure 9. Spatial growth rate for kz = 35: ——, LNS and - - - -, non-parallel linear stability
theory (LST) with curvature.

ratio, δ2/δl , from the current solution to that of the compressible similarity solution
(Reshotko & Beckwith 1958; Topham 1965). From the data in table 1, δ2/δl = 0.3926
while the similarity solution under the same conditions gives 0.4020. As pointed out by
a referee, this 2.3% difference is primarily due to our use of a constant viscosity while
the similarity solution is based on a linear viscosity–temperature relation. To verify
this, we have repeated our mean-flow calculation using a linear viscosity relation with
the result δ2/δl = 0.3989 that is within 0.8% of the similarity solution. This excellent
agreement provides additional validation of our numerical method.

3.2. Linear stability characteristics

The stability and receptivity characteristics of the three-dimensional boundary layer
on the swept parabolic cylinder are studied for two spanwise wavenumbers kz = 35
and kz = 100. The kz = 35 wavenumber corresponds to a relatively long-wavelength
stationary crossflow instability mode which is very nearly the most dangerous mode
(i.e. the mode which has the greatest amount of linear growth). The kz = 100 mode
is a relatively short-wavelength crossflow mode for which non-parallel effects are
expected to be significantly reduced as compared to the kz = 35 mode.

The stability characteristics of the three-dimensional boundary layer for kz = 35
are shown in figure 9. This figure shows the spatial growth rate, σ (based on the
integrated disturbance kinetic energy) obtained using two different techniques. The
solid line shows the results from a LNS calculation where the crossflow eigenfunction
was forced on the inflow boundary of the computational domain, upstream of the
first neutral point. The numerical method used to obtain this solution is identical to
that outlined in § 2.3 except that the linear stability eigenfunction is forced on the
inflow boundary and the wall is smooth (see Chapter 5 of Collis 1997). The dashed
line corresponds to the growth rate predicted by the linear stability analysis of § 2.4
which includes an exact account of surface curvature and a perturbation technique
for non-parallel effects. For s > 3 the agreement between the computed solution
and stability theory is excellent. However, for s < 3 there is clearly a significant
deviation, indicating that the perturbation approach used in the non-parallel theory is
inadequate in this region. A detailed discussion of the failure of non-parallel stability
theory is given in Collis (1997).

Similar spatial growth-rate results are shown for kz = 100 in figure 10. For this
shorter wavelength, the non-parallel stability theory is in excellent agreement with the
computed solution over the entire unstable region. For this relatively short spanwise
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Figure 11. Comparison of crossflow growth-rate predictions for kz = 100: ——, parallel LST;
- - - -, parallel LST with curvature; · · · · ·, non-parallel LST with curvature.

wavelength, the non-parallel effects near the leading edge are significantly reduced
and the perturbation approach in the linear stability analysis is adequate.

The linear stability results obtained for the parabolic cylinder are qualitatively
similar to previous results for the circular cylinder (Masad & Malik 1994). This is
demonstrated in figure 11 where linear stability growth-rate predictions for kz = 100
are shown. When convex surface curvature is included in the analysis, the growth
rate is dramatically reduced over the entire unstable range of s compared to parallel,
flat-plate theory. The addition of the non-parallel correction leads to an increase
in the predicted growth rate although, near the peak growth rate, the increase due
to non-parallelism is less than the decrease due to curvature making the actual
growth rate less than the quasi-parallel, flat-plate prediction for this mode. As shown
above, the combined theory with curvature and non-parallel effects is in excellent
agreement with LNS for this wavenumber. These results lead to the conclusion that
convex surface curvature generally causes a reduction in the growth rate of stationary
crossflow instability waves while non-parallel effects increase the growth rate and
this is consistent with the findings of Masad & Malik (1994) for the swept circular
cylinder. Similar results are obtained for the kz = 35 mode; however, as shown above,
the perturbation approximation for non-parallel effects is unable to accurately predict
the growth rate of the kz = 35 mode near the leading edge and the full LNS equations
are required to determine the stability characteristics.
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The chordwise wavenumber from LST for kz = 35 is shown in figure 12 where a
log scale is used in s to highlight the leading-edge behaviour. Curvature is seen to
have little influence on the wavenumber while non-parallel effects tend to decrease the
wavenumber magnitude. This decrease is most pronounced near the leading edge but
it also occurs, to a lesser degree, over the entire unstable range. Figure 13 shows the
crossflow wavenumber extracted from LNS solutions compared to LST with curvature
and non-parallel corrections. Similar to the growth-rate results, the wavenumber from
the non-parallel theory is in good agreement with LNS for kz = 100, but for kz = 35
the wavenumber predicted by theory is inaccurate upstream of s = 1.

Figure 14 shows the N-factor where

N =

∫ s

sI

σ(s) ds (3.9)

and sI is the location where the mode first becomes unstable. To compute the N-
factor, the growth rate extracted from the LNS solution is utilized since the stability
theory is inaccurate for kz = 35. (N-factor comparisons based on LNS and stability
theory are given in Collis (1997).) The N-factor is commonly used in wing design
to predict the location of the laminar-to-turbulent transition. In practice, a value of
N ≈ 10 is often taken as the transition location although, in reality, N at transition is
a function of the disturbance environment and instability mechanism(s) (Malik 1990).
From the figure, we see that the kz = 35 mode reaches a considerably larger value
of N compared to the kz = 100 mode. In fact, for these flow conditions, kz = 35
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is approximately the most dangerous crossflow mode which is the motivation for
studying the stability and receptivity characteristics of this mode. Given that kz = 35
is the most dangerous mode, it is particularly unfortunate that the non-parallel
perturbation approach fails to accurately predict its stability characteristics and the
implication of this for receptivity predictions is discussed below.

3.3. Receptivity predictions

We begin our investigation of receptivity by applying FRNT, discussed in § 2.5, to
the mean boundary-layer profiles on the parabolic cylinder. Figure 15 shows the
receptivity efficiency factor, ΛK̂ , for kz = 100 and kz = 35 as a function of roughness
location. Recall that ΛK̂ is proportional to the initial amplitude of an instability
wave but is independent of the geometry of the roughness. An interesting, and
previously undocumented, result that follows from figure 15 is that convex curvature
increases the efficiency of the receptivity process for this flow. This result holds
true over the full range of unstable spanwise wavenumbers as seen in figure 16
which shows the variation of ΛK̂ with kz for roughness located near the maximum
normalized crossflow velocity, sw = 0.8, both with and without curvature. The increase
in receptivity efficiency due to curvature is most pronounced near the first neutral point
(kz ≈ 40) where there is a local maximum in the receptivity efficiency. A similar local
maxima has been observed by Crouch (1993) for an incompressible Falkner–Skan–
Cooke boundary layer on a flat plate. With the exception of the region immediately
surrounding the lower neutral point, curvature causes a relatively uniform increase of
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the outflow sponge.

10% in the receptivity efficiency factor at this station. When interpreting the results in
figure 15, it is important to realize that ΛK̂ is the response for a Dirac delta function
bump in s (i.e. it is the Green’s function response). This explains why |Λ| increases
without bound as sw is decreased since the delta function has a unit spectrum for all
ks. The actual amplitude, as given by (2.28), is modulated by the Fourier spectrum in
s of the bump shape, hw , which limits the amplitude for a fixed bump width as sw is
decreased. The increase in receptivity efficiency due to convex curvature is particularly
interesting given the fact that convex curvature has a stabilizing effect on the growth
of crossflow modes as shown in § 2.4. The reduced growth rate with convex curvature
is offset, to some degree, by a greater initial amplitude. Of course, the net impact of
curvature depends on the particular conditions.

To evaluate the accuracy of FRNT predictions and to determined the impact of
non-parallel effects, LNS solutions have been computed for a variety of roughness
locations and the effective amplitude of the dominant stationary crossflow instability
wave at the roughness location has been extracted from each solution. Typical results
are shown in figure 17 which plots the evolution of K̂ for a bump with kz = 100
located at sw = 0.7 with σw = 0.01. Near the roughness site, K̂ has roughly the
shape of the imposed Gaussian bump. Downstream, there is a mild transient as the
spatially damped modes excited by the bump quickly decay. By s = 1.2, the response
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Figure 18. Growth rate based on K̂ for kz = 100: - - - -, extracted from receptivity solution with
sw = 0.7 and σw = 0.01; ——, LNS stability solution. Shaded region is the outflow sponge for the
receptivity calculation.

is dominated by the unstable crossflow mode and this continues to s = 1.5 where the
outflow sponge begins to damp the crossflow mode. From the variation of K̂ with s,
the spatial growth rate is determined using

σ = Re

[
∂

∂s
ln(K̂)

]
, (3.10)

and the computed growth rate is shown in figure 18 compared to the LNS stability
solution taken from figure 10. Downstream of s = 1.2 and until slightly upstream of
the sponge, the two growth rates are in excellent agreement. Upstream of s = 1.2, the
transient flow due to decaying modes excited by the bump leads to large oscillations
in the spatial growth rate (only a portion of the oscillation is shown). As a general
procedure for extracting the amplitude of the dominant crossflow mode, we compare
the growth rate from the receptivity calculation with the stability theory results of
§ 3.2. Since the growth rate is a very sensitive indication of transient behaviour, this
comparison allows the determination of a location, sl , where the transient is negligible.
For the case shown here, we selected sl = 1.4 and measured the amplitude of the
response at this location, Al , based on K̂(sl).

To compare the LNS receptivity results to FRNT requires that the crossflow
instability amplitude be extrapolated from sl back to sw , since the theory predicts the
amplitude at this location. For this purpose, we use the N-factor shown in figure 14.
The amplitude at sw is then given by

Aw = Ale
(N(sw)−N(sl )). (3.11)

Note that since the N-factor in figure 14 is computed from a LNS stability calcula-
tion, it takes exact account of curvature and non-parallel effects. Thus, there is no
approximation in the extrapolation.

Using this technique, figure 19 shows the extracted crossflow instability amplitude
for kz = 100 and kz = 35. For kz = 35 a roughness width of σw = 0.05 is used
while a narrower roughness distribution σw = 0.01 is utilized for the higher spanwise
wavenumber, kz = 100. These particular roughness widths were selected to provide
reasonable initial crossflow amplitudes at the first neutral point without requiring
excessive resolution near the roughness location. Since the roughness width is fixed,
the amplitude of the resulting crossflow mode eventually drops as the bump is moved
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Figure 19. Effective amplitude at the bump location for kz = 35, σw = 0.05 and kz = 100,
σw = 0.01: —•—, LNS solution; - - - -, FRNT no curvature; · · · · ·, FRNT with curvature.

towards the leading edge, since the magnitude of the streamwise wavenumber of the
crossflow mode increases (see figure 13) thus reducing the effective forcing amplitude
of the roughness due to a reduction in the magnitude of the Fourier transform of
the Gaussian roughness distribution (2.9). In addition to the LNS receptivity results,
figure 19 also shows FRNT receptivity predictions for the crossflow amplitude using
(2.28) in § 2.5.

First consider the results for kz = 100 shown in figure 19(a). The amplitude,
Aw , generally follows the same trend as the efficiency factor for large sw , with Aw
increasing as sw is reduced. At about sw = 0.65, there is a maximum in Aw which is
associated with the Fourier spectrum of the roughness distribution with σw = 0.01.
When comparing the LNS results to the FRNT predictions, the first observation
is that FRNT over-predicts the amplitude, by as much as 29% with curvature and
21% without curvature. Based on these results, it is obvious that non-parallel effects
tend to reduce the amplitude of crossflow vortices generated by roughness. Similar
to curvature, this result is opposite to that observed for stability characteristics,
where non-parallel flow, generally speaking, destabilizes crossflow vortices (see § 3.2).
Downstream of the maximum, the FRNT predictions approach the LNS solution,
as expected, with the no-curvature prediction in slightly better agreement than the
prediction with curvature. The fact that the FRNT prediction without curvature is in
better agreement with the LNS solution is similar to the stability results where the
growth rate with curvature is a worse approximation to the actual growth rate than
the local flat-plate prediction. Since non-parallel and curvature effects are competing,
including only one of the effects can result in a prediction which is in greater error
than the original parallel, flat-plate value.

Amplitude results for kz = 35 are shown in figure 19(b). Similar to the kz = 100 case,
both FRNT results significantly over-predict the crossflow amplitude near sw = 1.
The greater non-parallel effects for this long spanwise wavelength are evident in
the maximum error which is 77% with curvature and 45% without. For roughness
locations beyond approximately sw = 5, the FRNT amplitudes are in reasonably
good agreement with LNS. However, upstream of the neutral point at sw = 0.40, the
FRNT amplitudes are slightly lower than the LNS values. This crossover in FRNT
and LNS solutions (which is also likely to occur for kz = 100 for small sw) is due to

the error in the parallel-flow LST wavenumber used to evaluate ĥ(αcf) in the FRNT.
The receptivity results presented so far have been for fixed roughness width. For

moderately sized bumps, the actual value of σw is not expected to alter the qualitative
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Figure 20. Variation of Aw with σw at sw = 0.6, kz = 100. —•—, LNS; - - - -, FRNT no curvature;
· · · · ·, curve fitted to the LNS results using |Λ| = 193, αcf = −142.
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Figure 21. Receptivity efficiency function for kz = 35 and kz = 100: —•—, computed;
- - - -, FRNT no curvature; · · · · ·, FRNT with curvature.

comparison to FRNT. This is demonstrated in figure 20 which shows the effect of σw
on the initial crossflow amplitude with the bump placed at sw = 0.6 and kz = 100.
As expected, the FRNT prediction overestimates the amplitude for all σw . However,
the functional dependence of Aw on σw is correctly predicted by FRNT. This is
demonstrated by setting αcf = −142, which is the value based on |v̂s|max from the
LNS stability calculation (see figure 13), and adjusting ΛK̂ in (2.28) to generate a
curve that fits the LNS data. Excellent agreement is achieved for ΛK̂ = 193 and this
curve is also shown in figure 20. We point out that estimating ΛK̂ in this manner is

only an approximation, since the value of αcf used to evaluate |ĥw| is not necessarily
the ‘correct’ value. In fact, here we use only the real component of the wavenumber
in estimating ΛK̂ since the imaginary component is at least two orders of magnitude
smaller. A better fit could be obtained by optimizing both αcf and ΛK̂ , but the
improvement is only slight.

Given the success of the current method, we have used the same procedure to
estimate the value of ΛK̂ from the LNS solutions at other chordwise stations. Using
αcf , based on |v̂s|max from the LNS stability calculation, (2.9) is used to compute the

local value of |ĥw| and (2.28) is then solved for ΛK̂ . The results, for both values of
kz , are shown in figure 21 along with the FRNT predictions from figure 15. For both
spanwise wavenumbers, the receptivity efficiencies from LNS and FRNT approach
one another for large sw (≈ 5% difference at the furthest downstream station). This is
consistent with the reduction in non-parallel effects with increasing sw observed in the



Receptivity near a swept leading edge 165

stability analysis. Near the leading edge (i.e. roughness locations upstream of sw = 1),
non-parallel effects increase causing FRNT to over-predict the receptivity efficiency.
The influence of non-parallel effects is more pronounced for the kz = 35 mode, which
is also consistent with the linear stability results. For roughness placed at the upstream
neutral point, sw = 0.395 for kz = 35, the FRNT result with curvature has an error
of 264% while the prediction without curvature has a 182% error. For kz = 100 the
errors in the FRNT are reduced considerably to 32.2% for FRNT with curvature,
and 24.5% without curvature. For both spanwise wavenumbers, non-parallel effects
decrease the receptivity efficiency over the entire unstable region, but the decrease is
greatest near the leading edge. We note that since a perturbation approximation to
non-parallel effects was unable to predict the stability characteristics for kz = 35 near
the leading edge, is is possible that a first-order perturbation scheme used to correct
the parallel FRNT receptivity predictions may also fail in this region – especially
since FRNT predictions inherently depend on the underlying stability characteristics.
Future research is required to investigate non-parallel receptivity predictions.

3.4. Discussion of results

The results presented in the previous sections have identified curvature and non-
parallel effects as having a significant quantitative impact on the initial amplitude of
stationary crossflow vortices downstream of a localized roughness element. Given the
previously documented (Masad & Malik 1994; Malik & Balakumar 1993) effect of
both curvature and non-parallelism on the growth characteristics of crossflow modes,
their impact on receptivity is not surprising. What is interesting, however, is that
curvature, known to stabilize crossflow vortices, actually enhances receptivity, while
non-parallel effects, which typically destabilize crossflow modes, are found to attenuate
the initial crossflow amplitude. For the limited range of parameters investigated here,
the attenuation due to non-parallel effects is greater than the enhancement due to
convex surface curvature. Progressing downstream on the parabolic cylinder, curvature
and non-parallel effects are naturally reduced so that the FRNT predictions approach
the LNS solution for large values of the roughness location, sw . However, the effect
of non-parallelism is still evident at the furthest downstream stations investigated and
the amplitudes predicted by FRNT are consistently greater than the LNS solution.
The fact that non-parallel effects are so significant for this flow stems from the fact
that the first neutral point for crossflow vortices typically lies very close to the leading
edge. Choudhari (1994), when presenting FRNT results for FSC profiles, cautions
that since the neutral point for crossflow vortices occurs near the leading edge for
realistic geometries, non-parallel effects may be important. This hypothesis is clearly
substantiated by the current results where the error in the predicted amplitude (with
curvature) is as high as 77% just downstream of the neutral point.

To put this in perspective, assume that, given the actual initial amplitude of the
instability wave, transition occurs with N = 10 such that str = 11.0 based on the
stability data in figure 14 for kz = 35. Using FRNT, our estimate of the initial
amplitude would be 77% too high which is equivalent to an N-factor difference of
1.5. Thus, transition would be incorrectly predicted when N = 8.5, corresponding to
str = 8.15, which is an error of 26% in the transition location. In this case, FRNT leads
to a transition location prediction which is outside of typically accepted engineering
accuracy. In the context of a laminar-flow wing, if we assume that transition occurs
at x/c = 0.7 then a 26% error in the transition prediction leads to x/c = 0.52 for a
difference of 18% chord. This is indeed a significant error in the transition location
– the additional 18% chord may be the difference between economic viability and
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design failure. This is further exacerbated when one includes sources of uncertainty
in the transition prediction process, including unknown environmental disturbances,
bugs, dust, etc. Each of these inherently unknown factors requires an engineering
safety factor. If we start with a fixed error of 18% and add safety factors to account
for uncertainties, we are quickly left with a design that is predicted to be impractical,
when in fact it may be feasible.

It is interesting to compare the current findings to the recent study by Crouch &
Spalart (1995) who investigated the influence of non-parallel effects on the receptivity
of a two-dimensional boundary layer with localized suction subjected to a free-stream
acoustic wave. Comparing numerical simulations with FRNT predictions, they found
that the theory is in very good agreement with simulations downstream of the
first neutral point for the prediction of Tollmien–Schlichting wave amplitudes. At
the neutral point, the theory under-predicts the amplitude by 4% and this difference
increases further upstream to a value between 6.5% and 11.2%. Based on these results,
they conclude that neglecting the weak boundary-layer growth in the receptivity
theory is an acceptable approximation for this flow. Based on the current results, the
conclusion of Crouch & Spalart obviously does not apply for crossflow instability.
It is particularly interesting to note that they found non-parallel effects to slightly
increase the receptivity amplitude for Tollmien–Schlichting waves, while we find that
initial crossflow vortex amplitudes are generally attenuated by non-parallel effects.
This is in contrast with the influence of non-parallel flow on stability characteristics.
Fasel & Konzelmann (1990), in comparisons of Navier–Stokes solutions and stability
analysis, show that for Tollmien–Schlichting waves in a Blasius boundary layer, non-
parallel effects lead to an increase in the growth rate. Similarly, we have shown that
non-parallel flow also destabilizes crossflow vortices. Thus, there is no apparent trend
linking stability and receptivity results concerning non-parallel effects. However, we
note that the receptivity and stability processes under consideration are quite different,
and this statement must be considered in this light.

4. Conclusions
Receptivity to surface roughness has been investigated by modelling a roughness

element as a spanwise-periodic, linear perturbation of the wall boundary with a
Gaussian distribution in the chordwise direction. Receptivity results are obtained both
from Linearized Navier–Stokes (LNS) solutions and from Finite Reynolds Number
Theory (FRNT) predictions. The theoretical predictions are determined both with
and without surface curvature to identify its effect on receptivity. Based on the
theoretical predictions, curvature is shown to enhance the receptivity efficiency over
the entire unstable region and the curvature effect is greatest near the lower branch
of the neutral curve. The impact of non-parallel flow on the receptivity of crossflow
instability waves is established by a series of LNS calculations with surface roughness
placed at various locations on the wall. Comparison to the FRNT shows that non-
parallel flow significantly attenuates the initial amplitude of stationary crossflow
instability waves downstream of a roughness element near the leading edge. The
effect is most severe for the long-wavelength kz = 35 case where FRNT over-predicts
the amplitude of the crossflow mode by as much as 77%. For the shorter-wavelength
case, kz = 100, the maximum error in the FRNT prediction is 29%. Sufficiently far
from the leading edge, the theoretical predictions approach the computed solution
and are within 5% of the computed solution at the furthest downstream stations
considered here.
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We have verified the FRNT result that the receptivity amplitude can be written
as the product of the Fourier coefficient of the chordwise roughness distribution
at the local crossflow wavenumber and a function representing the efficiency of
the receptivity process. Based on this form of the solution, the receptivity efficiency
function is extracted from the computed solutions. The results indicate conclusively
that non-parallel effects dramatically reduce receptivity near the leading edge. For the
cases considered here, the FRNT over-predicts the efficiency function by as much as a
factor of 3 near the first neutral point. These results clearly indicate that the accurate
prediction of crossflow instability receptivity near a realistic leading edge must account
for the strongly non-parallel flow near the upstream neutral point. Unfortunately,
stability predictions using a perturbation approach for non-parallel effects proved
inadequate for the most dangerous crossflow mode for the conditions studied. Thus,
perturbation approaches for theoretical non-parallel receptivity prediction may also
prove inadequate; however further research is required to verify this claim.
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